微纳机器人关键技术与应用

发布时间:2023-04-04
入选理由:苏州大学提出基于尺蠖、粘滑、宏微双重驱动的跨尺度柔顺精密定位机构设计与驱控理论,创新研究多自由度并联微动机构、宏微双重驱动并联机构,实现厘米级行程、纳米级定位精度;提出表界面纳米力学宽频域动态测试力学方法,创新研究高频、宽模量测量难题;研究跨尺度、多介质、多维异质纳米结构间粘着机制,突破微观尺度下精准操控的难题;提出多能场耦合微纳机器人驱动,构建场控微纳机器人的群体控制方法;研究微纳制造三维组装、纳米互连、原位检测关键技术,研制AFM与SEM纳米操作机器人系统为微纳制造与生命科学提供支持。

 Soochow University proposes a theory for the design, driving and manipulation of cross-scale smooth precise positioning mechanisms based on inchworm, stick-slip and macro-micro dual driving technology, contributes innovative studies in multi-DOF parallel micromanipulators and macro-micro dual driving parallel mechanisms to achieve centimeter-level stroke and nano-level positioning accuracy. Mechanical methods for nanomechanical wide-frequency-domain dynamic tests of interfaces are suggested for innovative research on challenges in high-frequency wide-modulus measurement. The adhesion mechanism of cross-scale multi-materials multi-dimensional heterogeneous nano-structures is studied to break through the limitation of precise manipulation at micro level. A multi-energy-field coupling micro-nano robots driving technology is proposed to construct the crowd control approach of field-controlling micro-nano robots. Critical technologies of micro-nano manufacturing and 3D assembly, nano interconnection and in-situ tests are developed to construct AFM and SEM nano manipulation robotic systems towards to nano manufacturing and life sciences.
关键词:纳米操作,纳米机器人,多机器人协同
Nano Manipulation, Nano Robotics, Multi-robot Cooperation